Copied to
clipboard

G = C32⋊Dic11order 396 = 22·32·11

The semidirect product of C32 and Dic11 acting via Dic11/C11=C4

metabelian, soluble, monomial, A-group

Aliases: C32⋊Dic11, (C3×C33)⋊2C4, C11⋊(C32⋊C4), C3⋊S3.D11, (C11×C3⋊S3).2C2, SmallGroup(396,18)

Series: Derived Chief Lower central Upper central

C1C3×C33 — C32⋊Dic11
C1C11C3×C33C11×C3⋊S3 — C32⋊Dic11
C3×C33 — C32⋊Dic11
C1

Generators and relations for C32⋊Dic11
 G = < a,b,c,d | a3=b3=c22=1, d2=c11, ab=ba, cac-1=a-1, dad-1=ab-1, cbc-1=b-1, dbd-1=a-1b-1, dcd-1=c-1 >

9C2
2C3
2C3
99C4
6S3
6S3
9C22
2C33
2C33
9Dic11
6S3×C11
6S3×C11
11C32⋊C4

Smallest permutation representation of C32⋊Dic11
On 66 points
Generators in S66
(1 25 36)(2 37 26)(3 27 38)(4 39 28)(5 29 40)(6 41 30)(7 31 42)(8 43 32)(9 33 44)(10 23 34)(11 35 24)(12 62 51)(13 52 63)(14 64 53)(15 54 65)(16 66 55)(17 56 45)(18 46 57)(19 58 47)(20 48 59)(21 60 49)(22 50 61)
(12 51 62)(13 63 52)(14 53 64)(15 65 54)(16 55 66)(17 45 56)(18 57 46)(19 47 58)(20 59 48)(21 49 60)(22 61 50)
(1 2 3 4 5 6 7 8 9 10 11)(12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66)
(1 17)(2 16)(3 15)(4 14)(5 13)(6 12)(7 22)(8 21)(9 20)(10 19)(11 18)(23 58 34 47)(24 57 35 46)(25 56 36 45)(26 55 37 66)(27 54 38 65)(28 53 39 64)(29 52 40 63)(30 51 41 62)(31 50 42 61)(32 49 43 60)(33 48 44 59)

G:=sub<Sym(66)| (1,25,36)(2,37,26)(3,27,38)(4,39,28)(5,29,40)(6,41,30)(7,31,42)(8,43,32)(9,33,44)(10,23,34)(11,35,24)(12,62,51)(13,52,63)(14,64,53)(15,54,65)(16,66,55)(17,56,45)(18,46,57)(19,58,47)(20,48,59)(21,60,49)(22,50,61), (12,51,62)(13,63,52)(14,53,64)(15,65,54)(16,55,66)(17,45,56)(18,57,46)(19,47,58)(20,59,48)(21,49,60)(22,61,50), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66), (1,17)(2,16)(3,15)(4,14)(5,13)(6,12)(7,22)(8,21)(9,20)(10,19)(11,18)(23,58,34,47)(24,57,35,46)(25,56,36,45)(26,55,37,66)(27,54,38,65)(28,53,39,64)(29,52,40,63)(30,51,41,62)(31,50,42,61)(32,49,43,60)(33,48,44,59)>;

G:=Group( (1,25,36)(2,37,26)(3,27,38)(4,39,28)(5,29,40)(6,41,30)(7,31,42)(8,43,32)(9,33,44)(10,23,34)(11,35,24)(12,62,51)(13,52,63)(14,64,53)(15,54,65)(16,66,55)(17,56,45)(18,46,57)(19,58,47)(20,48,59)(21,60,49)(22,50,61), (12,51,62)(13,63,52)(14,53,64)(15,65,54)(16,55,66)(17,45,56)(18,57,46)(19,47,58)(20,59,48)(21,49,60)(22,61,50), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66), (1,17)(2,16)(3,15)(4,14)(5,13)(6,12)(7,22)(8,21)(9,20)(10,19)(11,18)(23,58,34,47)(24,57,35,46)(25,56,36,45)(26,55,37,66)(27,54,38,65)(28,53,39,64)(29,52,40,63)(30,51,41,62)(31,50,42,61)(32,49,43,60)(33,48,44,59) );

G=PermutationGroup([[(1,25,36),(2,37,26),(3,27,38),(4,39,28),(5,29,40),(6,41,30),(7,31,42),(8,43,32),(9,33,44),(10,23,34),(11,35,24),(12,62,51),(13,52,63),(14,64,53),(15,54,65),(16,66,55),(17,56,45),(18,46,57),(19,58,47),(20,48,59),(21,60,49),(22,50,61)], [(12,51,62),(13,63,52),(14,53,64),(15,65,54),(16,55,66),(17,45,56),(18,57,46),(19,47,58),(20,59,48),(21,49,60),(22,61,50)], [(1,2,3,4,5,6,7,8,9,10,11),(12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66)], [(1,17),(2,16),(3,15),(4,14),(5,13),(6,12),(7,22),(8,21),(9,20),(10,19),(11,18),(23,58,34,47),(24,57,35,46),(25,56,36,45),(26,55,37,66),(27,54,38,65),(28,53,39,64),(29,52,40,63),(30,51,41,62),(31,50,42,61),(32,49,43,60),(33,48,44,59)]])

36 conjugacy classes

class 1  2 3A3B4A4B11A···11E22A···22E33A···33T
order12334411···1122···2233···33
size194499992···218···184···4

36 irreducible representations

dim1112244
type+++-+
imageC1C2C4D11Dic11C32⋊C4C32⋊Dic11
kernelC32⋊Dic11C11×C3⋊S3C3×C33C3⋊S3C32C11C1
# reps11255220

Matrix representation of C32⋊Dic11 in GL4(𝔽397) generated by

0100
39639600
00396396
0010
,
1000
0100
0001
00396396
,
393000
4400
00990
00298298
,
0010
0001
1000
39639600
G:=sub<GL(4,GF(397))| [0,396,0,0,1,396,0,0,0,0,396,1,0,0,396,0],[1,0,0,0,0,1,0,0,0,0,0,396,0,0,1,396],[393,4,0,0,0,4,0,0,0,0,99,298,0,0,0,298],[0,0,1,396,0,0,0,396,1,0,0,0,0,1,0,0] >;

C32⋊Dic11 in GAP, Magma, Sage, TeX

C_3^2\rtimes {\rm Dic}_{11}
% in TeX

G:=Group("C3^2:Dic11");
// GroupNames label

G:=SmallGroup(396,18);
// by ID

G=gap.SmallGroup(396,18);
# by ID

G:=PCGroup([5,-2,-2,-3,3,-11,10,302,67,323,248,9004]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^22=1,d^2=c^11,a*b=b*a,c*a*c^-1=a^-1,d*a*d^-1=a*b^-1,c*b*c^-1=b^-1,d*b*d^-1=a^-1*b^-1,d*c*d^-1=c^-1>;
// generators/relations

Export

Subgroup lattice of C32⋊Dic11 in TeX

׿
×
𝔽